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Multi-Label Classification

• Given a vector x ∈ X of features, the goal is to learn a
function h(x) that predicts accurately a binary vector
y = (y1, . . . , ym) ∈ Y of labels.

• Example: Given a news report, the goal is to learn a machine
that tags the news report with relevant categories.

• The simple solution: solve the problem for each of the label
independently.
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Multi-Label Classification

Since the prediction is made for all labels simultaneously, two
interesting issues appear:

• A multitude of loss functions defined over multiple labels,

• Dependence/correlation between labels.
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Pitfalls in MLC Studies

In recent years, a plenty of algorithms has been introduced . . .
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Pitfalls in MLC Studies

• A large number of loss functions is commonly applied as
performance metrics, but a concrete connection between a
multi-label classifier and a loss function is rarely
established.

• This gives implicitly the misleading impression that the same
method can be optimal for different loss functions.

• It is assumed that performance can be improved by taking
the label dependence into account, but this term is used in
an intuitive manner, without any precise formal definition.
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Pitfalls in MLC Studies

• The empirical results are given on average without
investigation under which conditions a given algorithm
benefits.

• The reasons for improvements are not distinguished.
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Loss Functions

Let us discuss multi-label loss functions . . .
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Hamming and Subset 0/1 Loss

• Hamming loss measures the fraction of labels whose
relevance is incorrectly predicted:

LH(y,h(x)) =
1
m

m∑
i=1

Jyi 6= hi(x)K,

• while subset 0/1 loss measures whether the prediction totally
agrees with the true labeling:

Ls(y,h(x)) = Jy 6= h(x)K.
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Analysis of Hamming and Subset 0/1 Loss

Analysis contains:

• The form of risk minimizers,

• Whether the risk minimizers coincide in some circumstances,

• Bound analysis,

• Regret analysis.

• The analysis is simplified by assuming an unconstrained
hypothesis space.
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Risk Minimizers

• The risk minimizer defined by:

h∗(x) = arg min
h

EY|xL(Y,h),

• is given for the Hamming loss by:

h∗i (x) = arg max
b∈{0,1}

P(yi = b |x), i = 1, . . . ,m,

• while for the subset 0/1 loss by:

h∗(x) = arg max
y∈Y

P(y |x).

• The minimizer of the Hamming loss is the marginal mode,
while for the subset 0/1 loss the joint mode.
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Coincidence of Risk Minimizers

Proposition

The Hamming loss and subset 0/1 have the same risk minimizer,

h∗H(x) = h∗s(x),

if one of the following conditions holds:

(1) Labels Y1, . . . , Ym are conditionally m-independent,

P(Y|x) =
m∏

i=1

P(Yi|x).

(2) The probability of the joint mode satisfies,

P(h∗s(x)|x) ≥ 0.5.
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Bound Analysis

Proposition

For all distributions of Y given x, and for all models h, the
expectation of the subset 0/1 loss can be bounded in terms of
the expectation of the Hamming loss as follows:

1
m

EY[Ls(Y,h(x))] ≤ EY[LH(Y,h(x))] ≤ EY[Ls(Y,h(x))]
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Regret Analysis

The previous results may suggest that one of the loss functions can
be used as a proxy of the other:

• For some situations both risk minimizers coincide,

• One can provide mutual bounds for both loss functions,

• However, in the worst case analysis, we will show that
the regret is high . . .
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Regret Analysis

The regret of a classifier h with respect to a loss function Lz is
defined as:

rLz(h) = EXYLz(Y,h(X))− EXYLz(Y,h∗z(X)),

where expectation is taken over the joint distribution P(X,Y),
and h∗z is the Bayes-optimal classifier with respect to the loss
function Lz.

Since both loss functions are decomposable with respect to
individual instances, we analyze the expectation of Y for a given x.
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Regret Analysis

Proposition (Regret for subset 0/1 loss)

The following upper bound holds:

EYLs(Y,h∗H(x))− EYLs(Y,h∗s(x)) < 0.5.

Moreover, this bound is tight, i.e.,

sup
P

(EYLs(Y,h∗H(x))− EYLs(Y,h∗s(x))) = 0.5,

where the supremum is taken over all probability distributions on
Y.
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Regret Analysis

Proposition (Regret for Hamming loss)

The following upper bound holds for m > 3:

EYLH(Y,h∗s(x))− EYLH(Y,h∗H(x)) <
m− 2
m+ 2

.

Moreover, this bound is tight, i.e.

sup
P

(EYLH(Y,h∗s(x))− EYLH(Y,h∗H(x))) =
m− 2
m+ 2

,

where the supremum is taken over all probability distributions on
Y.
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Loss Functions

Summary:

• The risk minimizers of Hamming and subset 0/1 loss have a
different structure: marginal mode vs. joint mode.

• Under specific conditions, these two types of loss minimizers
are provably equivalent.

• These loss functions are mutually upper-bounded.

• Minimization of the subset 0/1 loss may cause a high regret
for the Hamming loss and vice versa.
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Empirical Confirmation of Theoretical Results

Let us empirically confirm theoretical results . . .
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Binary Relevance (BR)

• The simplest classifier in which a separate binary classifier
hi(·) is trained for each label λi:

hi : X → [0, 1]
x 7→ yi ∈ {0, 1}

• It is often criticized for treating labels independently.

• However, it is still an unbiased approach for the Hamming loss
(and other losses for which the marginal distribution is
sufficient for obtaining the risk-minimizing model).
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Label Power-set (LP)

• The method reduces the problem to multi-class classification
by considering each label subset L ∈ L as a distinct
meta-class:

h : X → [0, 1]m

x 7→ y ∈ {0, 1}m

• It is often claimed to be a right approach to MLC, since it
takes the label dependence into account.

• However, this approach is clearly tailored for the subset 0/1
loss.
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Experimental Settings

The artificial data experiment:

• conditionally independent data,

• conditionally dependent data,

• non-linear data,

• low-dimensional problems with 2 or 3 labels,

• two classifiers: Binary Relevance (BR), Label Power-set (LP)
with linear SVM as base learners.
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Table: Results on two artificial data sets: conditionally independent (top)
and conditionally dependent (down).

Conditional independence

classifier Hamming loss subset 0/1 loss

BR 0.4208(±.0014) 0.8088(±.0020)
LP 0.4212(±.0011) 0.8101(±.0025)

B-O 0.4162 0.8016

Conditional dependence

classifier Hamming loss subset 0/1 loss

BR 0.3900(±.0015) 0.7374(±.0021)
LP 0.4227(±.0019) 0.6102(±.0033)

B-O 0.3897 0.6029

B-O is the Bayes Optimal classifier.

22 / 28



Figure: Data set composed of two labels: the first label is obtained by a
linear model, while the second label represents the XOR problem.
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Table: Results of three classifiers on this data set.

classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(±.0097) 0.4751(±.0196)
LP Linear SVM 0.0143(±.0020) 0.0195(±.0011)

B-O 0 0

24 / 28



Table: Results of three classifiers on this data set.

classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(±.0097) 0.4751(±.0196)
LP Linear SVM 0.0143(±.0020) 0.0195(±.0011)

BR MLRules 0.0011(±.0002) 0.0020(±.0003)

B-O 0 0
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Experimental Settings

Summary:

• LP takes the label dependence into account, but the
conditional one: it is well-tailored for the subset 0/1 loss, but
fails for the Hamming loss.

• LP may gain from the expansion of the feature or hypothesis
space.

• One can easily tailor LP for solving the Hamming loss
minimization problem, by marginalization of the joint
probability distribution that is a by-product of this classifier.
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Figure: Results of three classifiers on 8 benchmark data sets.
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The experimental results on benchmark data confirm our claims.
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Take-Away Message

The message to be taken home . . .
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Take-Away Message

• Surprisingly, new methods are often proposed without
explicitly saying what loss they intend to minimize.

• A careful distinction between loss functions seems to be even
more important for MLC than for standard classification.

• One cannot expect the same MLC method to be optimal for
different types of losses.

• The reasons of improvements should be carefully
distinguished.
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