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Abstract. Multilabel classification is an extension of conventional clas-
sification in which a single instance can be associated with multiple la-
bels. Recent research has shown that, just like for standard classification,
instance-based learning algorithms relying on the nearest neighbor esti-
mation principle can be used quite successfully in this context. However,
since hitherto existing algorithms do not take correlations and interde-
pendencies between labels into account, their potential has not yet been
fully exploited. In this paper, we propose a new approach to multila-
bel classification, which is based on a framework that unifies instance-
based learning and logistic regression, comprising both methods as spe-
cial cases. This approach allows one to capture interdependencies be-
tween labels and, moreover, to combine model-based and similarity-based
inference for multilabel classification. As will be shown by experimental
studies, our approach is able to improve predictive accuracy in terms of
several evaluation criteria for multilabel prediction.

1 Introduction

In conventional classification, each instance is assumed to belong to exactly one
among a finite set of candidate classes. As opposed to this, the setting of multi-
label classification allows an instance to belong to several classes simultaneously
or, say, to attach more than one label to a single instance. Problems of this type
are ubiquitous in everyday life: At IMDb, a movie can be categorized as action,
crime, and thriller ; a CNN news report can be tagged as people and political
at the same time; in biology, a typical multilabel learning example is the gene
functional prediction problem, where a gene can be associated with multiple
functional classes, such as metabolism, transcription, and protein synthesis.

Multilabel classification has received increasing attention in machine learn-
ing in recent years, not only due to its practical relevance, but also as it is
interesting from a theoretical point of view. In fact, even though it is possible
to reduce the problem of multilabel classification to conventional classification
in one way or the other and, hence, to apply existing methods for the latter
to solve the former, straightforward solutions of this type are usually not opti-
mal. In particular, since the presence or absence of the different class labels has
to be predicted simultaneously, it is obviously important to exploit correlations



and interdependencies between these labels. This is usually not accomplished by
simple transformations to standard classification.

Even though quite a number of more sophisticated methods for multilabel
classification has been proposed in the literature, the application of instance-
based learning (IBL) has not been studied very deeply in this context so far.
This is a bit surprising, given that IBL algorithms based on the nearest neighbor
estimation principle have been applied quite successfully in classification and
pattern recognition for a long time [1]. A notable exception is the multilabel k-
nearest neighbor (MLKNN) method that was recently proposed in [2], where it
was shown to be competitive to state-of-the-art machine learning methods.

In this paper, we propose a novel approach to multilabel classification, which
is based on a framework that unifies instance-based learning and logistic regres-
sion, comprising both methods as special cases. This approach overcomes some
limitations of existing instance-based multilabel classification methods, includ-
ing MLKNN. In particular, it allows one to capture interdependencies between
the class labels in a proper way.

The rest of this paper is organized as follows: The problem of multilabel
classification is introduced in a more formal way in Section 2, and related work is
discussed in Section 3. Our novel method is then described in Section 4. Section 5
is devoted to experiments with several benchmark data sets. The paper ends with
a summary and some concluding remarks in Section 6.

2 Multilabel Classification

Let X denote an instance space and let L = {λ1, λ2 . . . λm} be a finite set of
class labels. Moreover, suppose that each instance x ∈ X can be associated with
a subset of labels L ∈ 2L; this subset is often called the set of relevant labels,
while the complement L\L is considered as irrelevant for x. Given training data
in the form of a finite set T of observations in the form of tuples (x, Lx) ∈ X×2L,
typically assumed to be drawn independently from an (unknown) probability
distribution on X×2L, the goal in multilabel classification is to learn a classifier
h : X → 2L that generalizes well beyond these observations in the sense of
minimizing the expected prediction loss with respect to a specific loss function;
commonly used loss functions will be reviewed in Section 5.3.

Note that multilabel classification can be reduced to a conventional classifica-
tion problem in a straightforward way, namely by considering each label subset
L ∈ 2L as a distinct (meta-)class. This approach is referred to as label powerset
(LP) in the literature. An obvious drawback of this approach is the potentially
large number of classes that one has to deal with in the newly generated prob-
lem; obviously, this number is 2|L| (or 2|L| − 1 if the empty set is excluded as a
prediction). This is the reason why LP typically works well if the original label
set L is small but quickly deteriorates for larger label sets. Nevertheless, LP is
often used as a benchmark, and we shall also include it in our experiments later
on (cf. Section 5).



Another way of reducing multilabel to conventional classification is offered
by the binary relevance approach. Here, a separate binary classifier hi is trained
for each label λi ∈ L, reducing the supervision to information about the presence
or absence of this label while ignoring the other ones. For a query instance x,
this classifier is supposed to predict whether λi is relevant for x (hi(x) = 1) or
not (hi(x) = 0). A multilabel prediction for x is then given by h(x) = {λi ∈
L |hi(x) = 1}. Since binary relevance learning treats every label independently
of all other labels, an obvious disadvantage of this approach is that it ignores
correlations and interdependencies between labels.

Some of the more sophisticated approaches learn a multilabel classifier h in
an indirect way via a scoring function f : X×L → R that assigns a real number
to each instance/label combination. The idea is that a score f(x, λ) is in direct
correspondence with the probability that λ is relevant for x. Given a scoring
function of this type, multilabel prediction can be realized via thresholding:

h(x) = {λ ∈ L | f(x, λ) ≥ t } ,

where t ∈ R is a threshold. As a byproduct, a scoring function offers the possibil-
ity to produce a ranking of the class labels, simply by ordering them according
to their score. Sometimes, this ranking is even more desirable as a prediction,
and indeed, there are several evaluation metrics that compare a true label subset
with a predicted ranking instead of a predicted label subset (cf. Section 5.3).

3 Related Work

Multilabel classification has received a great deal of attention in machine learning
in recent years, and a number of methods has been developed, often motivated
by specific types of applications such as text categorization [3–6], computer vi-
sion [7], and bioinformatics [8, 9, 6]. Besides, several well-established methods for
conventional classification have been extended to the multi-label case, including
support vector machines [10, 9, 7], neural networks [6], and decision trees [11].

In this paper, we are especially interested in instance-based approaches to
multilabel classification, i.e., methods based on the nearest neighbor estimation
principle [12, 1]. This interest is largely motivated by the multilabel k-nearest
neighbor (MLKNN) method that has recently been proposed in [2]. In that
paper, the authors show that MLKNN performs quite well in practice. In the
concrete experiments presented, MLKNN even outperformed some state-of-the-
art model-based approaches to multilabel classification, including RankSVM and
AdaBoost.MH [9, 13].

MLKNN is a binary relevance learner, i.e., it learns a single classifier hi for
each label λi ∈ L. However, instead of using the standard k-nearest neighbor
(KNN) classifier as a base learner, it implements the hi by means of a combina-
tion of KNN and Bayesian inference: Given a query instance x with unknown
multilabel classification L ⊆ L, it finds the k nearest neighbors of x in the train-
ing data and counts the number of occurrences of λi among these neighbors.



Considering this number, y, as information in the form of a realization of a
random variable Y , the posterior probability of λi ∈ L is given by

P(λi ∈ L |Y = y) =
P(Y = y |λi ∈ L) ·P(λi ∈ L)

P(Y = y)
, (1)

which leads to the decision rule

hi(x) =
{

1 if P(Y = y |λi ∈ L)P(λi ∈ L) ≥ P(Y = y |λi 6∈ L)P(λi 6∈ L)
0 otherwise

The prior probabilities P(λi ∈ L) and P(λi 6∈ L) as well as the conditional prob-
abilities P(Y = y |λi ∈ L) and P(Y = y |λi 6∈ L) are estimated from the training
data in terms of corresponding relative frequencies. As an aside, we note that
these estimations come with a relatively high computational complexity, since
they involve the consideration of all k-neighborhoods of all training instances.

4 Combining IBL and Logistic Regression

In this section, we introduce a machine learning method whose basic idea is to
consider the information that derives from examples similar to a query instance
as a feature of that instance, thereby blurring the distinction between instance-
based and model-based learning to some extent. This idea is put into practice
by means of a learning algorithm that realizes instance-based classification as
logistic regression.

4.1 KNN Classification

Suppose an instance x to be described in terms of features φi, i = 1, 2 . . . n,
where φi(x) denotes the value of the i-th feature for instance x. The instance
space X is endowed with a distance measure: ∆(x,x′) is the distance between
instances x and x′. We shall first focus on the case of binary classification and
hence define the set of class labels by Y = {−1,+1}. A tuple (x, y) ∈ X × Y
is called a labeled instance or example. D denotes a sample that consists of N
labeled instances (xi, yi), 1 ≤ i ≤ N . Finally, a new instance x0 ∈ X (a query)
is given, whose label y0 ∈ {−1,+1} is to be estimated.

The nearest neighbor (NN) principle prescribes to estimate the label of the
yet unclassified query x0 by the label of the nearest (least distant) sample in-
stance. The KNN approach is a slight generalization, which takes the k ≥ 1
nearest neighbors of x0 into account. That is, an estimation ŷ0 of y0 is derived
from the set Nk(x0) of the k nearest neighbors of x0, usually by means of a
majority vote:

ŷ0 = arg max
y∈Y

#{xi ∈ Nk(x0) | yi = y}. (2)



4.2 IBL as Logistic Regression

A key idea of our approach is to consider the labels of neighbored instances as
“features” of the query x0 whose label is to be estimated. It is worth mentioning
that similar ideas have recently been exploited in relational learning [14] and
collective classification [15, 16].

Denote by p0 the prior probability of y0 = +1 and by π0 the corresponding
posterior probability. Moreover, let δi

df= ∆(x0,xi) be the distance between x0

and xi. Taking the known label yi as information about the unknown label y0,
we can consider the posterior probability

π0
df= P(y0 = +1 | yi).

More specifically, Bayes’ rule yields

π0

1− π0
=

P(yi | y0 = +1)
P(yi | y0 = −1)

· p0

1− p0

= ρ · p0

1− p0
,

where ρ is the likelihood ratio. Taking logarithms on both sides, we get

log
(

π0

1− π0

)
= log(ρ) + ω0 (3)

with ω0 = log(p0)− log(1− p0).
Model (3) still requires the specification of the likelihood ratio ρ. In order to

obey the basic principle underlying IBL, the latter should be a function of the
distance δi. In fact, ρ should become large for δi → 0 if yi = +1 and small if
yi = −1: Observing a very close instance xi with label yi = +1 (yi = −1) makes
y0 = +1 more (un)likely in comparison to yi = −1. Moreover, ρ should tend to 1
as δi →∞: If xi is too far away, its label does not provide any evidence, neither
in favor of y0 = +1 nor in favor of y0 = −1. A parameterized function satisfying
these properties is

ρ = ρ(δ) df= exp
(
yi ·

α

δ

)
,

where α > 0 is a constant. Note that the choice of a special functional form
for ρ is quite comparable to the specification of the kernel function used in
(non-parametric) kernel-based density estimation, as well as to the choice of
the weight function in weighted NN estimation. ρ(δ) actually determines the
probability that two instances whose distance is given by δ = ∆(x0,xi) do have
the same label.

Now, taking the complete sample neighborhood N (x0) of x0 into account
and —as in the naive Bayes approach— making the simplifying assumption of
conditional independence, we obtain

log
(

π0

1− π0

)
= ω0 + α

∑
xi∈N (x0)

yi
δi

(4)

= ω0 + α · ω+(x0),



where ω+(x0) can be seen as a summary of the evidence in favor of label +1. As
can be seen, the latter is simply given by the sum of neighbors with label +1,
weighted by their distance, minus the weighted sum of neighbors with label −1.

As concerns the classification of the query x0, the decision is determined by
the sign of the right-hand side in (4). From this point of view, (4) does basically
realize a weighted NN estimation, or, stated differently, it is a “model-based”
version of instance-based learning. Still, it differs from the simple NN scheme in
that it includes a bias term ω0, which plays the same role as the prior probability
in Bayesian inference.

From a statistical point of view, (4) is nothing else than a logistic regression
equation. In other words, taking a “feature-based” view of instance-based learn-
ing and applying a Bayesian approach to inference comes down to realizing IBL
as logistic regression.

By introducing a similarity measure κ, inversely related to the distance func-
tion ∆, (4) can be written in the form

log
(

π0

1− π0

)
= ω0 + α

∑
xi∈N (x0)

κ(x0,xi) · yi . (5)

Note that, as a special case, this approach can mimic the standard KNN classifier
(2), namely by setting ω0 = 0 and defining κ in terms of the (data-dependent)
“KNN kernel”

κ(x0,xi) =
{

1 if xi ∈ Nk(x0)
0 otherwise . (6)

4.3 Estimation and Classification

The parameter α in (4) determines the weight of the evidence

ω+(x0) =
∑

xi∈N (x0)

κ(x0,xi) · yi (7)

and, hence, its influence on the posterior probability estimation π0. In fact, α
plays the role of a smoothing (regularization) parameter. The smaller α is chosen,
the smoother an estimated probability function ( obtained by applying (5) to all
points x0 ∈ X ) will be. In the extreme case where α = 0, one obtains a constant
function (equal to ω0).

An optimal specification of α can be accomplished by adapting this parameter
to the data D, using the method of maximum likelihood (ML). For each sample
point xj denote by

ω+(xj)
df=

∑
xj 6=xi∈N (xj)

κ(xi,xj) · yi

the sample evidence in favor of yj = +1. The log-likelihood function is then
given by the mapping

α 7→
∑

j : yj=+1

w0 + αω+(xj)−
N∑
j=1

log
(
1 + exp(w0 + αω+(xj)

)
, (8)



and the optimal parameter α∗ is the maximizer of (8). The latter can be com-
puted by means of standard methods from logistic regression. The posterior
probability π0 for the query is then given by

π0 =
exp(ω0 + α∗ ω+(x0))

1 + exp(ω0 + α∗ ω+(x0))
.

To classify x0, one applies the decision rule

ŷ0
df=
{

+1 if π0 ≥ 1/2
−1 if π0 < 1/2 .

Subsequently, we shall refer to the method outlined above as IBLR (Instance-
Based Learning by Logistic Regression).

4.4 Including Additional Features

In the previous section, instance-based learning has been embedded into logistic
regression, using the information coming from the neighbors of a query x0 as
a “feature” of that query. In this section, we consider a possible generalization
of this approach, namely the idea to extend the model (5) by taking further
features of x0 into account:

log
(

π0

1− π0

)
= αω+(x0) +

∑
ϕs∈F

βs ϕs(x0), (9)

where F = {ϕ0, ϕ1 . . . ϕr} is a subset of the available features {φ0, φ1 . . . φn} and
ϕ0 = φ0 ≡ 1, which means that β0 plays the role of ω0. Equation (9) is a common
logistic regression model, except that ω+(x0) is a “non-standard” feature.

The approach (9), that we shall call IBLR+, integrates instance-based and
model-based (attribute-based) learning and, by estimating the regression coef-
ficients in (9), achieves an optimal balance between both approaches. The ex-
tended model (9) can be interpreted as a logistic regression model of IBL, as
outlined in Section 4.2, where the bias ω0 is no longer constant:

log
(

π0

1− π0

)
= ω0(x0) + αω+(x0) , (10)

with ω0(x0) df=
∑
βsϕs(x0) being an instance-specific bias determined by the

model-based part of (9).

4.5 Extension to Multilabel Classification

So far, we only considered the case of binary classification. To extend the ap-
proach to multilabel classification with a label set L = {λ1, λ2 . . . λm}, the idea



is to train one classifier hi for each label. For the i-th label λi, this classifier is
derived from the model

log

(
π

(i)
0

1− π(i)
0

)
= ω

(i)
0 +

m∑
j=1

α
(i)
j · ω

(i)
+j(x0) , (11)

where π(i)
0 denotes the (posterior) probability that λi is relevant for x0, and

ω
(i)
+j(x0) =

∑
x∈N (x0)

κ(x0,x) · yj(x) (12)

is a summary of the presence of the j-th label λj in the neighborhood of x0;
here, yj(x) = +1 if λj is present (relevant) for the neighbor x, and yj(x) = −1
in case it is absent (non-relevant).

Obviously, the approach (11) is able to take interdependencies between class
labels into consideration. More specifically, the estimated coefficient α(i)

j indi-
cates to what extent the relevance of label λi is influenced by the relevance of λj .
A value α(i)

j � 0 means that the presence of λj makes the relevance of λi more
likely, i.e., there is a positive correlation. Correspondingly, a negative coefficient
would indicate a negative correlation.

Note that the estimated probabilities π(i)
0 can naturally be considered as

scores for the labels λi. Therefore, a ranking of the labels is simply obtained by
sorting them in decreasing order according to their probabilities. Moreover, a
pure multilabel prediction for x0 is derived from this ranking via thresholding
at t = 0.5.

Of course, it is also possible to combine the model (11) with the extension
proposed in Section 4.4. This leads to a model

log

(
π

(i)
0

1− π(i)
0

)
=

m∑
j=1

α
(i)
j · ω

(i)
+j(x0) +

∑
ϕs∈F

β(i)
s ϕr(x0) . (13)

We shall refer to the extensions (11) and (13) of IBLR to multilabel classification
as IBLR-ML and IBLR-ML+, respectively.

5 Experimental Results

This section is devoted to experimental studies that we conducted to get a con-
crete idea of the performance of our method. Before presenting the results of our
experiments, we give some information about the learning algorithms and data
sets included in the study, as well as the criteria used for evaluation.

5.1 Learning Algorithms

For the reasons mentioned previously, our main interest is focused on MLKNN,
which is arguably the state-of-the-art in instance-based multilabel ranking. This



Table 1. Statistics for the multilabel data sets used in the experiments. The symbol *
indicates that the data set contains binary features; cardinality is the average number
of labels per instance.

data set domain #instances #attributes #labels cardinality

emotions music 593 72 6 1.87
image vision 2000 135 5 1.24
genbase biology 662 1186∗ 27 1.25
mediamill multimedia 5000 120 101 4.27
reuters text 7119 243 7 1.24
scene vision 2407 294 6 1.07
yeast biology 2417 103 14 4.24

method is parameterized by the size of the neighborhood, for which we adopted
the value k = 10. This value is recommended in [2], where it was found to yield
the best performance. For the sake of fairness, we use the same neighborhood
size for our method, in conjunction with the KNN kernel (6). In both cases,
the simple Euclidean metric (on the complete attribute space) was used as a
distance function. For our method, we tried both variants, the pure instance-
based version (11), and the extended model (13) with F including all available
features. Intuitively, one may expect the latter, IBLR-ML+, to be advantageous
to the former, IBLR-ML, as it can use features in a more flexible way. Yet, one
should note that, since we simply included all attributes in F , each attribute will
essentially be used twice in IBLR-ML+, thus producing a kind of redundancy.
Besides, model induction will of course become more difficult, since a larger
number of parameters needs to be estimated.

As an additional baseline we used binary relevance learning (BR) with three
different base learners: logistic regression, C4.5 (the WEKA [17] implementation
J48 in its default setting), and KNN (again with k = 10). Finally, we also
included label powerset (LP) with C4.5 as a base learner.

5.2 Data Sets

Benchmark data for multi-label classification is not as abundant as for conven-
tional classification, and indeed, experiments in this field are often restricted
to a very few or even only a single data set. For our experimental study, we
have collected a comparatively large number of seven data sets from different
domains; an overview is given in Table 1.1

The emotions data was created from a selection of songs from 233 musical
albums [18]. From each song, a sequence of 30 seconds after the initial 30 seconds
was extracted. The resulting sound clips were stored and converted into wave
files of 22050 Hz sampling rate, 16-bit per sample and mono. From each wave file,

1 All data sets are public available at http://mlkd.csd.auth.gr/multilabel.html

and http://lamda.nju.edu.cn/data.htm.



72 features have been extracted, falling into two categories: rhythmic and timbre.
Then, in the emotion labeling process, 6 main emotional clusters are retained
corresponding to the Tellegen-Watson-Clark model of mood: amazed-surprised,
happy-pleased, relaxing-clam, quiet-still, sad-lonely and angry-aggressive.

Image and scene are semantic scene classification data sets proposed, respec-
tively, by [19] and [7], in which a picture can be categorized into one or more
classes. In the scene data, for example, pictures can have the following classes:
beach, sunset, foliage, field, mountain, and urban. Features of this data set cor-
respond to spatial color moments in the LUV space. Color as well as spatial
information have been shown to be fairly effective in distinguishing between cer-
tain types of outdoor scenes: bright and warm colors at the top of a picture may
correspond to a sunset, while those at the bottom may correspond to a desert
rock. Features of the image data set are generated by the SBN method [20] and
essentially correspond to attributes in an RGB color space.

From the biological field, we have chosen the two data sets yeast and genbase.
The yeast data set is about predicting the functional classes of genes in the Yeast
Saccharomyces cerevisiae. Each gene is described by the concatenation of micro-
array expression data and a phylogenetic profile, and is associated with a set
of 14 functional classes. The data set contains 2417 genes in total, and each
gene is represented by a 103-dimensional feature vector. In the genbase data, 27
important protein families are considered, including, for example, PDOC00064
(a class of oxydoreductases) and PDOC00154 (a class of isomerases). During the
preprocessing, a training set was exported, consisting of 662 proteins that belong
to one or more of these 27 classes.

From the text processing field, we have chosen a subset of the widely studied
Reuters-21578 collection [21]. The seven most frequent categories are considered.
After removing documents whose label sets or main texts are empty, 8866 docu-
ments are retained where only 3.37% of them are associated with more than one
class label. After randomly removing documents with only one label, a text cat-
egorization data set containing 2,000 documents is obtained. Each document is
represented as a bag of instances using the standard sliding window techniques,
where each instance corresponds to a text segment enclosed in one sliding win-
dow of size 50 (overlapped with 25 words). “Function words” are removed from
the vocabulary and the remaining words are stemmed. Instances in the bags
adopt the “bag-of-words” representation based on term frequency. Without loss
of effectiveness, dimensionality reduction is performed by retaining the top 2%
words with highest document frequency. Thereafter, each instance is represented
as a 243-dimensional feature vector.

The mediamill data set is from the field of multimedia indexing and origi-
nates from the well-known TREC Video Retrieval Evaluation data (TRECVID
2005/2006) initiated by American National Institute of Standards and Technol-
ogy (NIST), which contains 85 hours of international broadcast news data. The
task in this data set is the automated detection of a lexicon of 101 semantic
concepts in videos. Every instance of this data set has 120 numeric features
including visual, textual, as well as fusion information. The trained classifier



should be able to categorize an unseen instance to some of these 101 labels, e.g.,
face, car, male, soccer, and so on. More details about this data set can be found
at [22].

5.3 Evaluation Measures

To evaluate the performance of multilabel classification methods, a number of
criteria and metrics have been proposed in the literature. For a classifier h, let
h(x) ⊆ L denote its multilabel prediction for an instance x, and let Lx denote
the true set of relevant labels. Moreover, in case a related scoring function f is
also defined, let f(x, λ) denote the score assigned to label λ for instance x. The
most commonly used evaluation measures are defined as follows:

– Hamming loss computes the percentage of labels whose relevance is predicted
incorrectly:

HamLoss(h) =
1
|L|
∣∣h(x)∆Lx

∣∣, (14)

where ∆ is the symmetric difference between two sets.
– One error computes how many times the top-ranked label is not relevant:

OneError(f) =
{

1 if arg maxλ∈L f(x, λ) /∈ Lx

0 otherwise (15)

– Coverage determines how far one needs to go in the list of labels to cover
all the relevant labels of an instance. This measure is loosely related to the
precision at the level of perfect recall:

Coverage(f) = max
λ∈Lx

rankf (x, λ)− 1 , (16)

where rankf (x, λ) denotes the position of label x in the ordering induced
by f .

– Rank loss computes the average fraction of label pairs that are not correctly
ordered:

RankLoss(f) =
#{(λ, λ′) | f(x, λ) ≤ f(x, λ′), (λ, λ′) ∈ Lx × Lx}

|Lx||Lx|
, (17)

where Lx = L \ Lx is the set of irrelevant labels.
– Average precision determines for each relevant label λ ∈ Lx the percentage

of relevant labels among all labels that are ranked above it, and averages
these percentages over all relevant labels:

AvePrec(f) =
1
|Lx|

∑
λ∈Lx

|{λ′ | rankf (x, λ′) ≤ rankf (x, λ), λ′ ∈ Lx}|
rankf (x, λ)

.

(18)

Notice that only Hamming loss evaluates mere multilabel predictions (i.e., the
multilabel classifier h), while the others metrics evaluate the underlying ranking
function f . Moreover, smaller values indicate better performance for all mea-
sures except average precision. Finally, except for coverage, all measures are
normalized and assume values between 0 and 1.
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Fig. 1. Comparison of all classifiers against each other with the Nemenyi test. Groups
of classifiers that are not significantly different (at p = 0.05) are connected.

5.4 Results and Discussion

The results of a cross validation study (10-fold, 5 repeats) are summarized in
Table 3 at the end of the paper. As can be seen, the baseline methods BR
and LP are in general not competitive. Looking at the average ranks, IBLR-ML
consistently outperforms all other methods, regardless of the evaluation metric,
indicating that it is the strongest method overall. The ranking among the three
instance-based methods is IBLR-ML � IBLR-ML+ � MLKNN for all measures
except OneError, for which the latter two change the position.

To analyze the results more thoroughly, we followed the two-step statistical
test procedure recommended in [23], consisting of a Friedman test of the null
hypothesis that all learners have equal performance and, in case this hypothesis
is rejected, a Nemenyi test to compare learners in a pairwise way. Both tests are
based on the average ranks as shown in the bottom line in Table 3. Even though
the Friedman test suggests that there are significant differences between the
methods, most of the pairwise comparisons remain statistically non-significant
(at a significance level of 5%); see Fig. 1. This is not surprising, however, given
that the number of data sets included in the experiments, despite being much
higher than usual, is still quite limited from a statistical point of view. Nev-
ertheless, the overall picture taken from the experiments is clearly in favor of
IBLR-ML.

As to MLKNN, it is interesting to compare this method with the BR-version
of KNN. In fact, since MLKNN is a binary relevance learner, too, the only differ-



Table 2. Classification error on binary classification problems. The number in brackets
behind the performance value is the rank of the method on the corresponding data set
(for each data set, the methods are ranked in decreasing order of performance). The
average rank is the average of the ranks across all data sets.

data set iblr-ml+ iblr-ml mlknn br-knn

breast-cancer .280(4) .252(1) .259(2) .262(3)
breast-w .037(3.5) .037(3.5) .036(2) .034(1)
colic .195(3) .176(1) .350(4) .182(2)
credit-a .135(2) .132(1) .328(4) .138(3)
credit-g .229(1) .265(3) .306(4) .261(2)
diabetes .233(1) .263(4) .259(3) .256(2)
heart-statlog .170(1) .193(2.5) .363(4) .193(2.5)
hepatitis .175(1) .192(2) .204(4) .199(3)
ionosphere .117(2.5) .117(2.5) .108(1) .171(4)
kr-vs-kp .018(1) .044(2.5) .044(2.5) .046(4)
labor .210(3) .130(1) .270(4) .150(2)
mushroom .000(1.5) .000(1.5) .001(3.5) .001(3.5)
sick .030(1) .039(2) .061(4) .040(3)
sonar .250(2) .245(1) .327(4) .284(3)
tic-tac-toe .125(1) .137(3) .136(2) .317(4)
vote .044(1) .060(2) .074(3) .076(4)

average rank 1.84 2.09 3.19 2.88

ence between these two methods concerns the incorporation of global information
in MLKNN, which is accomplished through the Bayesian updating (1) of local
information about the relevance of labels. From Table 3, it can be seen that
MLKNN is better than BR-KNN in terms of all ranking measures, but not in
terms of the Hamming loss, for which it is even a bit worse. Thus, in terms of
mere relevance prediction, MLKNN does not seem to offer special advantages.
Our explanation for this finding is that the incorporation of global information
is indeed not useful for a simple 0/1 prediction. In a sense, this is perhaps not
very surprising, given that the use of global information is somehow in conflict
with the basic principle of local estimation underlying nearest neighbor predic-
tion. Exploiting such information does, however, offer a reasonable way to break
ties between class labels, which in turn explains the positive effect on ranking
performance. In fact, one should note that, when simply scoring labels by the
number of occurrences among the k neighbors of a query, such ties are quite
likely; in particular, all non-relevant labels that never occur will have a score of
0 and will hence be tied. Resorting to global information about their relevance
is then clearly more reasonable than breaking ties at random.

To validate our conjecture that the incorporation of global information in
MLKNN is actually not very useful for mere relevance prediction, we have con-
ducted an additional experiments using 16 binary classification problems from
the UCI repository. Using this type of data makes sense, since, for a binary rel-
evance learner, minimizing Hamming loss is equivalent to minimizing 0/1 loss
for m binary classification problems that are solved independently of each other.



The results of a 5 times 10-fold cross validation, summarized in Table 2, are
completely in agreement with our previous study. MLKNN does indeed show
the worst performance and is even outperformed by the simple BR-KNN. In-
terestingly, IBLR-ML+ is now a bit better than IBLR-ML. A reasonable expla-
nation for this finding is that, compared to the multi-label case, the relevance
information that comes from the neighbors of a query in binary classification
only concerns a single label and, therefore, is rather sparse. Correspondingly,
information about additional features is revaluated.

6 Summary and Conclusions

We have presented a novel approach to instance-based learning, called IBLR,
that can be used for classification in general and for multilabel classification in
particular. Considering label information of neighbored examples as features of a
query instance, the idea of IBLR is to reduce instance-based learning formally to
logistic regression. An optimal balance between global and local inference, and
in the extended version IBLR+ also between instance-based and model-based
(attribute-oriented) learning, can then be achieved by the estimation of optimal
regression coefficients.

For multilabel classification, this idea is especially appealing, as it allows
one to take interdependencies between different labels into consideration. These
dependencies are directly reflected by the sign and magnitude of related regres-
sion coefficients. This ability distinguishes IBLR from hitherto existing instance-
based methods for multilabel classification, and is probably one of the main
factors for its excellent performance. In fact, our extensive empirical study has
clearly shown that IBLR improves upon existing methods, in particular the
MLKNN method that can be considered as the state-of-the-art in instance-based
multilabel classification.

Interestingly, our results also suggest that the basic idea underlying MLKNN,
namely to combine instance-based learning and Bayesian inference, is beneficial
for the ranking performance but not in terms of mere relevance prediction. In-
vestigating the influence on specific performance measures in more detail, and
elaborating on (instance-based) methods for minimizing specific loss functions,
is an interesting topic of future work. Besides, for IBLR+, we plan to exploit the
possibility to combine instance-based and model-based inference in a more so-
phisticated way, for example by selecting optimal feature subsets for both parts
instead of simply using all features twice.

References

1. Aha, D., Kibler, D., Alber, M.: Instance-based learning algorithms. Machine
Learning 6(1) (1991) 37–66

2. Zhang, M.L., Zhou, Z.H.: ML-kNN: A lazy learning approach to multi-label learn-
ing. Pattern Recognition 40(7) (2007) 2038–2048



3. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text catego-
rization. Machine Learning 39(2) (2000) 135–168

4. Ueda, N., Saito, K.: Parametric mixture models for multi-label text. In Becker,
S., Thrun, S., Obermayer, K., eds.: Advances in Neural Information Processing.
Volume 15., Cambridge MA, MIT Press (2003) 721–728

5. Kazawa, H., Izumitani, T., Taira, H., Maeda, E.: Maximal margin labeling for
multi-topic text categorization. In Saul, L.K., Weiss, Y., Bottou, L., eds.: Advances
in Neural Inf. Proc. Syst. Volume 17., Cambridge MA, MIT Press (2005)

6. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to func-
tional genomics and text categorization. In: IEEE Transactions on Knowledge and
Data Engineering. Volume 18. (2006) 1338–1351

7. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classif-
fication. Pattern Recognition 37(9) (2004) 1757–1771

8. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In
Raedt, L.D., Siebes, A., eds.: Lecture Notes in Computer Science. Volume 2168.,
Berlin, Springer (2001) 42–53

9. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In
Dietterich, T.G., Becker, S., Ghahramani, Z., eds.: Advances in Neural Information
Processing Systems. Volume 14., Cambridge MA, MIT Press (2002) 681–687

10. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classiffication.
In: Advances in Knowledge Discovery and Data Mining. Volume 3056 of LNCS.,
Springer (2004) 20–33

11. Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Machine Learning 73 (2008) 185–214

12. Dasarathy, B., ed.: Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California (1991)

13. Comite, F.D., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision
tree from texts and data. In Perner, P., Rosenfeld, A., eds.: Lecture Notes in
Computer Science. Volume 2734., Berlin, Springer (2003) 35–49

14. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT
Press (2007)

15. Lu, Q., Getoor, L.: Link-based classification. In: Proc. ICML-03, Washington
(2003) 496–503

16. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proc.
CIKM-05, Bremen, Germany (2005)

17. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2nd edn. Morgan Kaufmann, San Francisco, CA, USA (2005)

18. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of
music into emotions. In: Proc. Int. Conf. Music Information Retrieval. (2008)

19. Zhou, Z.H., Zhang., M.L.: Multi-instance multi-label learning with application to
scene classification. In Schölkopf, B., Platt, J., Hofmann, T., eds.: Advances in
Neural Inf. Proc. Syst. Volume 19., Cambridge MA, MIT Press (2007) 1609–1616

20. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification.
In: Proc. ICML, Madison WI (1998) 341–349

21. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (2002) 1–47

22. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders,
A.W.M.: The challenge problem for automated detection of 101 semantic concepts
in multimedia. In: Proc. ACM Multimedia, Santa Barbara, USA (2006) 421–430

23. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7 (2006) 1–30



Table 3. Experimental results in terms of different evaluation measures. The number in
brackets behind the performance value is the rank of the method on the corresponding
data set (for each data set, the methods are ranked in decreasing order of performance).
The average rank is the average of the ranks across all data sets.

iblr-ml+ iblr-ml mlknn lp br-lr br-c4.5 br-knn

Hamming
emotions 0.213(3) 0.185(1) 0.263(6) 0.265(7) 0.214(4) 0.253(5) 0.191(2)
genbase 0.002(2) 0.002(3) 0.005(7) 0.002(4) 0.002(5) 0.001(1) 0.004(6)

image 0.182(1) 0.189(2) 0.195(4) 0.257(7) 0.202(5) 0.245(6) 0.193(3)
mediamill 0.03(6) 0.028(3) 0.027(2) 0.039(7) 0.029(4) 0.032(5) 0.027(1)

reuters 0.044(1) 0.084(6) 0.073(5) 0.067(4) 0.049(2) 0.058(3) 0.09(7)
scene 0.126(4) 0.084(1) 0.087(2) 0.142(7) 0.14(6) 0.133(5) 0.093(3)
yeast 0.199(4) 0.194(1) 0.194(2) 0.28(7) 0.206(5) 0.25(6) 0.196(3)

average rank 3 2.43 4 6.14 4.43 4.43 3.57

One Error
emotions 0.278(3) 0.257(1) 0.393(5) 0.43(7) 0.278(4) 0.422(6) 0.265(2)
genbase 0.014(5) 0.007(2) 0.009(3) 0.01(4) 0.015(6) 0.003(1) 0.017(7)

image 0.328(1) 0.367(2) 0.382(4) 0.507(6) 0.37(3) 0.512(7) 0.386(5)
mediamill 0.356(5) 0.185(3) 0.136(2) 0.367(6) 0.277(4) 0.381(7) 0.133(1)

reuters 0.076(1) 0.22(6) 0.185(5) 0.162(4) 0.086(2) 0.145(3) 0.233(7)
scene 0.349(4) 0.224(2) 0.223(1) 0.394(6) 0.364(5) 0.411(7) 0.26(3)
yeast 0.249(5) 0.227(1) 0.228(2) 0.351(6) 0.241(4) 0.389(7) 0.234(3)

average rank 3.43 2.43 3.14 5.57 4 5.43 4

Coverage
emotions 1.844(4) 1.689(1) 2.258(5) 2.576(6) 1.836(3) 2.608(7) 1.771(2)
genbase 0.356(1) 0.422(4) 0.561(7) 0.529(6) 0.391(3) 0.372(2) 0.436(5)

image 0.963(1) 1.056(3) 1.129(5) 1.589(6) 1.052(2) 1.615(7) 1.102(4)
mediamill 16.681(4) 15.161(3) 12.757(1) 49.469(7) 14.323(2) 47.996(6) 21.344(5)

reuters 0.411(1) 0.758(4) 0.676(3) 0.986(7) 0.44(2) 0.852(6) 0.82(5)
scene 0.911(5) 0.466(1) 0.472(2) 1.145(6) 0.871(4) 1.288(7) 0.551(3)
yeast 6.289(3) 6.203(1) 6.273(2) 9.204(6) 6.492(4) 9.353(7) 6.517(5)

average rank 2.71 2.43 3.57 6.29 2.86 6 4.14

Rank Loss
emotions 0.168(2) 0.146(1) 0.258(5) 0.499(7) 0.168(3) 0.372(6) 0.183(4)
genbase 0.002(1) 0.004(2) 0.006(4) 0.017(7) 0.005(3) 0.006(5) 0.01(6)

image 0.175(1) 0.197(3) 0.214(4) 0.537(7) 0.196(2) 0.409(6) 0.252(5)
mediamill 0.05(4) 0.043(3) 0.037(1) 0.451(7) 0.041(2) 0.187(6) 0.117(5)

reuters 0.026(1) 0.083(4) 0.069(3) 0.18(7) 0.03(2) 0.092(5) 0.113(6)
scene 0.15(4) 0.076(1) 0.077(2) 0.393(7) 0.157(5) 0.299(6) 0.109(3)
yeast 0.168(3) 0.164(1) 0.167(2) 0.545(7) 0.176(4) 0.362(6) 0.204(5)

average rank 2.29 2.14 3 7 3 5.71 4.86

Ave. Prec.
emotions 0.794(3) 0.816(1) 0.71(5) 0.683(6) 0.794(4) 0.683(7) 0.805(2)
genbase 0.989(3) 0.99(2) 0.989(4) 0.986(6) 0.988(5) 0.993(1) 0.982(7)

image 0.789(1) 0.763(2) 0.748(5) 0.653(6) 0.763(3) 0.649(7) 0.752(4)
mediamill 0.694(5) 0.731(3) 0.751(1) 0.498(7) 0.722(4) 0.582(6) 0.739(2)

reuters 0.951(1) 0.859(6) 0.881(4) 0.871(5) 0.944(2) 0.889(3) 0.848(7)
scene 0.773(4) 0.867(1) 0.867(2) 0.734(6) 0.769(5) 0.715(7) 0.844(3)
yeast 0.763(3) 0.769(1) 0.764(2) 0.621(6) 0.754(5) 0.619(7) 0.761(4)

average rank 2.86 2.29 3.29 6 4 5.43 4.14


